Comparative proteomic analysis of seedling leaves of different salt tolerant soybean genotypes.
نویسندگان
چکیده
Salinity is one of the major environmental constraints limiting yield of crop plants in many semi-arid and arid regions around the world. To understand responses in soybean seedling to salt stress at proteomic level, the extracted proteins from seedling leaves of salt-sensitive genotype Jackson and salt-tolerant genotype Lee 68 under 150 mM NaCl stress for 1, 12, 72 and 144 h, respectively, were analyzed by 2-DE. Approximately 800 protein spots were detected on 2-DE gels. Among them, 91 were found to be differently expressed, with 78 being successfully identified by MALDI-TOF-TOF. The identified proteins were involved in 14 metabolic pathways and cellular processes. Based on most of the 78 salt-responsive proteins, a salt stress-responsive protein network was proposed. This network consisted of several functional components, including balancing between ROS production and scavenging, accelerated proteolysis and reduced biosynthesis of proteins, impaired photosynthesis, abundant energy supply and enhanced biosynthesis of ethylene. Salt-tolerant genotype Lee 68 possessed the ability of higher ROS scavenging, more abundant energy supply and ethylene production, and stronger photosynthesis than salt-sensitive genotype Jackson under salt stress, which may be the major reasons why it is more salt-tolerant than Jackson.
منابع مشابه
iTRAQ-Based Comparative Proteomic Analysis of Seedling Leaves of Two Upland Cotton Genotypes Differing in Salt Tolerance
Cotton yields are greatly reduced under high salinity stress conditions, although cotton is considered a moderately salt-tolerant crop. Understanding at the molecular level how cotton responds to salt stress will help in developing salt tolerant varieties. Here, we combined physiological analysis with isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomics of seedling leav...
متن کاملComparative Proteomic Analysis of Soybean Leaves and Roots by iTRAQ Provides Insights into Response Mechanisms to Short-Term Salt Stress
Salinity severely threatens land use capability and crop yields worldwide. Understanding the mechanisms that protect soybeans from salt stress will help in the development of salt-stress tolerant leguminous plants. Here we initially analyzed the changes in malondialdehyde levels, the activities of superoxide dismutase and peroxidases, chlorophyll content, and Na(+)/K(+) ratios in leaves and roo...
متن کاملComparative Metabolite Profiling of Two Rice Genotypes with Contrasting Salt Stress Tolerance at the Seedling Stage
BACKGROUND Rice is sensitive to salt stress, especially at the seedling stage, with rice varieties differing remarkably in salt tolerance (ST). To understand the physiological mechanisms of ST, we investigated salt stress responses at the metabolite level. METHODS Gas chromatography-mass spectrometry was used to profile metabolite changes in the salt-tolerant line FL478 and the sensitive vari...
متن کاملTrichoderma-Induced Enhancement of Soybean Seedling Performance in Response to Salt Stress
In this experiment soybean seeds were pre-treated with salt tolerant isolate of Trichoderma harzianum to evaluate the different aspects of seedling growth and metabolism in response to different concentrations of NaCl. Trichoderma isolate was more effective in improving dry weight and root volume of seedlings during mild salt stress. Seedlings obtained from bioprimed seeds had significantly hig...
متن کاملMetabolic Profiles Reveal Changes in Wild and Cultivated Soybean Seedling Leaves under Salt Stress
Clarification of the metabolic mechanisms underlying salt stress responses in plants will allow further optimization of crop breeding and cultivation to obtain high yields in saline-alkali land. Here, we characterized 68 differential metabolites of cultivated soybean (Glycine max) and wild soybean (Glycine soja) under neutral-salt and alkali-salt stresses using gas chromatography-mass spectrome...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of proteomics
دوره 75 5 شماره
صفحات -
تاریخ انتشار 2012